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Abstract

A fixed grid solution for tracking a moving solidification front controlled by coupled heat and mass transport in the presence of an
under-cooled liquid is developed. A known closed form similarity solution for the solidification of a binary alloy in a one-dimensional
domain is outlined. A previously reported enthalpy based model for this problem is presented and a novel numerical solution devised.
Comparisons with the analytical solution show that the proposed numerical solution can produce high-fidelity predictions across a wide
range of conditions including cases where the liquid becomes under-cooled.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification problems that exhibit a moving and sharp
interface between the solid and liquid phases are computa-
tionally challenging. The key difficulty is the requirement to
accurately track the solid–liquid interface as it moves over
a discrete description of the problem domain. Many popu-
lar numerical solutions used to overcome this difficulty are
based on the enthalpy formulation [1,2]. Such methods,
dating back to the middle of the last century [3,4], are
based on a governing equation that conserves the energy
(enthalpy). This equation is valid throughout the problem
domain (solid + liquid) and can be numerically solved, at
each time step, on a fixed space grid. From the calculated
nodal enthalpy field an auxiliary variable—the liquid frac-
tion (f = 1 in liquid, f = 0 in solid)—can be extracted and
used to track the movement of the solid–liquid interface
[4–6]. Enthalpy methods have been extensively verified
against alternative approaches for tracking solidification
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fronts, e.g., front fixing [7], deforming grids [8], and semi-
analytical [9].

The classic solidification problem is the Stefan problem
[1]. The problem is set in a one-dimensional semi-infinite
domain x* P 0 containing a single component (pure)
liquid, super heated to a temperature T �0 above the unique
solidification temperature T �f . A solidified layer is advanced
into the liquid by lowering and maintaining the tempera-
ture at the surface x* = 0 to T �sur < T �f . This is a useful
problem because, when the heat transfer is controlled by
heat conduction alone, it can admit a closed similarity solu-
tion [1]; a solution that can be used to verify numerical
solution approaches designed for more general cases.

An explicit time stepping enthalpy solution of the classic
Stefan problem will (i) solve for the nodal enthalpy field at
the new time level using the nodal temperature field from
the previous time step and then (ii) use the updated nodal
enthalpy field to calculate an updated nodal temperature
field for use in the next time step. A key feature, that
enables the updating of the nodal temperature field from
the enthalpy, is that node points in the discretization where
the phase change is occurring are readily identified. For
example, assuming a single constant volumetric specific
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Nomenclature

c* volumetric specific heat [J/m3 K]
c normalized specific heat
C+ is solute concentration [wt%]
C0 initial solute concentration in the liquid [wt%]
C concentration normalized by C0

D* mass diffusivity [m2/s]
D normalized mass diffusivity
f liquid fraction
H* volumetric enthalpy [J/m3]
H dimensionless enthalpy
h dimensionless heat transfer coefficient
k is the partition coefficient
Le Lewis number [¼ a�l

D�l
]

l a length dimension [m]
L* volumetric latent heat [J/m3]
L dimensionless latent heat
m slope in phase diagram [K]
qH dimensionless heat flux
qC dimensionless solute flux
St solutal Stefan number [¼ �mlC0

c�l
L�]

s location of the solid–liquid interface
T * temperature [K]
T dimensionless temperature
Tamb dimensionless ambient temperature
T �equ equilibrium temperature [K]

Tequ dimensionless equilibrium temperature
T �f fusion temperature of solvent [K]
t time
V solute potential
x space dimension

Greek symbols

a* thermal diffusivity [m2/s]
a normalized thermal diffusivity
k similarity variable

Superscripts

f mixture value
i solid–liquid interface value
new new time level
* quantity with dimension

Subscripts
i node point counter
i_in left face of control volume i

i_out right face of control volume i

l liquid phase
s solid phase
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Fig. 1. Schematic of binary phase diagram.
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heat c*, a latent heat L*, and setting the reference temper-
ature for calculating the enthalpy as T �f , the phase change
nodes can be identified by enthalpies falling in the range
c�T �f < H � < c�T �f þ L�; in one-dimensional problems there
is never more than one node, in a given time step, that will
satisfy this condition.

Moving away from the classic Stefan problem a more
advanced solidification problem considers the solidification
of multi-component alloys, e.g., see recent work by Voller
and co-workers [2,10], and Ganguly and Chakraborty [11].
A standard test problem, the so-called ‘‘binary-alloy prob-
lem”, involves the solidification of a binary alloy in the
one-dimensional semi-infinite domain x* P 0. Initially,
the alloy is liquid with a uniform solute composition C0

and temperature above the equilibrium liquidus tempera-
ture, i.e., T �0 > T �equ, the liquidus line in the phase diagram
(see schematic in Fig. 1). Solidification is nucleated by low-
ering and fixing the surface temperature to T �sur < T �equ.
When the binary liquid solidifies there is a partitioning of
the solute between the solid and liquid phases. As a result
the movement of the solid–liquid interface is controlled by
both heat and mass (solute) transport. As with the case of
solidification of a pure liquid, if the heat and mass trans-
port is controlled by diffusion, a closed form similarity
solution can be found, Rubinstein [12] (see discussion in
Alexiades and Solomon [13]).
An enthalpy based model and numerical solution of the
one-dimensional binary-alloy problem has been presented
by Crowley and Ockendon [14]. In this solution the unique
node where the solid–liquid interface is located is, assuming
a constant specific heat and a reference temperature
T �f þ mC0, identified by the nodal enthalpy falling in the
range c�T �equ < H � < c�T �equ þ L�. In contrast to the basic
Stefan problem where the phase change temperature T �f is
a fixed constant, the equilibrium temperature T �equ in this



698 V.R. Voller / International Journal of Heat and Mass Transfer 51 (2008) 696–706
condition depends on the current value of the solute con-
centration and hence varies from node to node and time
step to time step. This necessitates the solution of a non-lin-
ear equation to update the nodal temperature field from the
current enthalpy field. Crowley and Ockendon [14] use
their enthalpy method to solve an example problem and
show excellent agreement with the Rubinstein [12,13] simi-
larity solution. In later work Voller [15] used an implicit
time stepping version of the Crowley and Ockendon
enthalpy model in conjunction with a variable time step
to restricted the solid–liquid interface to coincide with a
node point at each time step. The performance of this
‘‘node jumping” scheme matched that reported by Crowley
and Ockendon [14].

Alexiades and Solomon [13] and Wilson et al. [16] have
highlighted an important shortcoming with the Crowley
and Ockendon enthalpy solution. When the Lewis number
(the ratio of thermal to solute diffusivity in the liquid
phase) is large, the solute rejected into the liquid as the
solid forms is not easily removed from the region ahead
of the solid–liquid interface. This can lead to a situation
known as constitutional under-cooling [17] in which there
is a region ahead of the interface where the equilibrium
temperature, calculated by substituting the solute concen-
tration into the liquidus line of the phase diagram, is above
the real temperature, i.e., Tequ > T, see Fig. 2. This has two
possible consequences. (1) The operation of the Crowley–
Ockendon method may fail since, in the region of constitu-
tional under-cooling, there could be a number of nodes
where T �equ < H � ¼ c�T � þ L� < T �equ þ L� and as a result a
unique node associated with the solid–liquid interface can-
not be identified. (2) In a physical setting, any small solid
imperfection forming on the interface will find itself in a
local environment favorable for further growth, resulting
in a break down of the solid–liquid interface into a mushy
region, where, at the scale of the problem, distinct solid and
liquid regions cannot be identified. Wilson et al. [16] take
account of both of these consequences in developing a
numerical solution that is able to handle the formation of
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Fig. 2. Region of constitutional under-cooling.
a mushy region. In essence the use of this modified solution
assumes that once a region of constitutional under-cooling
is formed the sharp solid–liquid interface will break down
into a mushy region. This is a reasonable assumption if
the scale of the problem—defined by the width of the
domain normal to the growth direction—is much larger
than the characteristic length scale of the solid–liquid mor-
phology in the mushy region. On the other hand, if the
scale in the normal direction is small, i.e., the solidification
domain is an insulated thin ‘‘slot” like geometry, then it
may be possible to retain a sharp-solid liquid interface in
the presence of liquid under-cooling. In fact, if the thick-
ness of the slot is less than the critical wave length calcu-
lated by the Mullins and Sekerka interface stability
theory [18], a sharp-planar interface will be maintained.
Hence, under the correct physical situation it is reasonable
to assume a sharp-interface in the presence of liquid under-
cooling.

The objective of this paper is to extend previous
enthalpy methods to solve binary-alloy problems that
involve a sharp-interface in the presence of an under-
cooled liquid. The proposed extension of the enthalpy
method is related to a recent modification of the Crowley
and Ockendon [14] scheme that has been used to simulate
the dendritic growth of equiaxed dendritic crystals in ini-
tially under-cooled melts [19]. In contrast to this work,
the solution of the binary-alloy problem—as stated
above—does not require incorporation of surface-tension
induced under-cooling on the solid–liquid interface. The
solution of the binary-alloy problem does, however, require
consideration of key features that are not treated in the
previous enthalpy simulation of equiaxed crystal growth
[19]; in particular, a fixed temperature boundary condition
and different physical properties between solid and liquid
phases. These features result in additional numerical com-
plexity, the former requires a treatment of heat and solute
transport in the solid phase, the later requires handling of
the discontinuous properties across the solid–liquid inter-
face. Incorporating an ability to handle a fixed temperature
boundary condition and discontinuous properties, even in
the absence of surface-tension or kinetic under-cooling,
represents a contribution in current efforts toward a com-
plete model of crystal growth processes.

In light of the above discussion, the development of the
new enthalpy method for solving the binary-alloy problem
in the presence of an under-cooled melt is justified on two
counts. (1) It is physically possible to maintain a sharp
interface in the presence of under-cooling and hence a solu-
tion may have practical value. (2) The numerical develop-
ments required will improve and verify the capabilities of
fixed grid enthalpy methods for the more general solidifica-
tion moving boundary problems related to crystal growth.

In the next section the governing equations and the
Rubinstein [12,13] similarity solution are outlined and par-
ticular limit cases are noted. Then a version of the Crowley
and Okendon [14] enthalpy model of binary alloy solidifi-
cation is presented. A new enthalpy solution that can
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handle discontinuous thermal properties—in particular
specific heat—and maintain a sharp interface in the pres-
ence of liquid under-cooling is developed. The proposed
solution method is tested by comparing with the Rubin-
stein solution for three cases, (i) no under-cooling during
solidification, (ii) the appearance of constitutional under-
cooling during solidification, and (iii) solidification into
an initially under-cooled melt. To the author’s knowledge
the solution of the later two problems is the first time that
an enthalpy solution to the binary alloy problem in the
presence of liquid undercooling has been presented.
2. The binary alloy problem and Rubinstein [12,13] solution

2.1. Parameters and variables

The following scalings and dimensionless numbers will
be used throughout this work

H ¼ H �

L�
; T ¼ T � � T �f � mlC0

L�=c�l
; C ¼ Cþ

C0

;

x ¼ x�

l
; s ¼ s�

l
; t ¼ alt�

l2
; a ¼ a�s

a�l
;

D ¼ D�s
D�l
; c ¼ c�s

c�l
; k ¼ ml

ms

;

Le ¼
a�l
D�l
; St ¼ mlC0

c�l
L�
; T equ ¼ �Stð1� ClÞ

ð1Þ

where the superscript (*) indicates a quantity with dimen-
sion, the subscripts (s) and (l) refer to the solid and liquid
phases respectively, H is enthalpy, T is temperature, T �f is
the fusion temperature of the pure solvent [K], l is an
appropriate length dimension [m], L* is the volumetric
latent heat [J/m3], c* is the volumetric specific heat
[J/m3 K], c is the normalized specific heat, C+ is solute con-
centration [wt%], C0 is the initial solute concentration in
the liquid, C is the concentration normalized by C0, x is
the space dimension in a one-dimensional domain, s is
the location of the solid–liquid interface in this domain, t

is time, a* is thermal diffusivity [m2/s], a is the normalized
thermal diffusivity, D* is mass diffusivity [m2/s], D is the
normalized mass diffusivity, k is the partition coefficient,
m [K] is the slope of the assumed straight liquidus (l) or sol-
idus lines (s) in the phase diagram (see Fig. 1), Le is the Le-
wis number, St is the solutal Stefan number, and Tequ is the
dimensionless equilibrium temperature—read off the liqui-
dus line in the phase diagram.
2.2. Governing equations

The problem set up involves a binary alloy melt at a uni-
form solute concentration Cl = 1 and uniform temperature
T0 held in a one-dimensional semi-infinite domain
0 6 x 61. At time t = 0 the temperature of the surface
of this domain is fixed to a temperature Tsur sufficient to
initiate solidification, so that, as time increases, a solid
layer x = s(t) grows from the x = 0 surface into the liquid
alloy. The governing equations are

Heat conduction in the solid:

oT
ot
¼ a

o2T
ox2

; 0 6 x 6 sðtÞ ð2Þ

Heat conduction in the liquid:

oT
ot
¼ o

2T
ox2

; x P sðtÞ ð3Þ

Solute diffusion in the solid:

oCs

ot
¼ 1

Le
D

o2Cs

ox2
; 0 6 x 6 sðtÞ ð4Þ

Solute diffusion in the liquid:

oCl

ot
¼ 1

Le
o2Cl

ox2
; x P sðtÞ ð5Þ

The boundary conditions are
at x = 0

oCs

ox
¼ 0; T ¼ T sur ð6Þ

as x ?1
Cl ! 1; T ! T 0 ð7Þ

On the moving solid–liquid interface x = s(t) there is, due
to the partitioning of the solute, a jump in solute concen-
tration such that from the phase diagram, Fig. 1.

Csðs; tÞ ¼ kClðs; tÞ ¼ kCiðtÞ ð8Þ

where Ci(t) is the liquid concentration on the interface. In
addition, the temperature of the interface is given by the
liquidus line, i.e.,

T iðtÞ ¼ T equðs; tÞ ¼ �Stð1� CiðtÞÞ ð9Þ

Further, neglecting flow due to density change, the heat
balance (Stefan condition) and mass balance on the moving
solid–liquid interface at x = s(t) are written as

ca
oT
ox

����
s�
� oT

ox

����
sþ
¼ ds

dt
ð10Þ

D
1

Le
oCs

ox
� 1

Le
oCl

ox
¼ ð1� kÞCi

ds
dt

ð11Þ
2.3. Similarity solution

In a general solidification of a multi-component alloy
due to segregation and curvature effects unique values of
concentration and temperature cannot be associated with
the solid–liquid interface, i.e., the values C i and T i will
change with time. As noted by Rubinstein [12], however,
in the binary-alloy problem—as described by the governing
equations and boundary conditions given above—the
interface concentration and temperature will take unique
and constant values, C i and T i; a situation that allows
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the governing equations to admit a closed form similarity
solution. In brief, by setting

s ¼ 2k
ffiffi
t
p

ð12Þ
the temperature and concentration profiles

T ¼ T sur þ ðT i � T surÞ
erf 1ffiffi

a
p x

2
ffi
t
p

� �
erf kffiffi

a
p
� � ;

Cs ¼ kCi; 0 6 x 6 sðtÞ ð13Þ

T ¼ T 0 þ ðT i � T 0Þ
erfc x

2
ffi
t
p

� �
erfcðkÞ ;

Cl ¼ 1þ ðCi � 1Þ
erfc x

ffiffiffiffi
Le
p

2
ffi
t
p

� �
erfcðk

ffiffiffiffiffi
Le
p
Þ

x > sðtÞ ð14Þ

satisfy the heat and mass transport governing equations
(2)–(5) along with the initial and fixed-boundary condi-
tions. The three unknowns in these equations, Ci, Ti and
k, leading to a closed solution, are obtained on satisfying
the condition set by the liquidus slope

T i þ Stð1� CiÞ ¼ 0 ð15Þ
and the heat (10) and mass (11) balance conditions on the
moving interface x = s(t)

ffiffiffi
p
p

k� c
ffiffiffi
a
p T i � T sur

erf kffiffi
a
p
� � e�

k2

a � T i � T 0

erfcðkÞ e�k2 ¼ 0 ð16Þ

ð1� kÞCik
ffiffiffiffiffi
Le
p ffiffiffi

p
p

ek2Leerfcðk
ffiffiffiffiffi
Le
p
Þ � ðCi � 1Þ ¼ 0 ð17Þ
2.4. Constitutional under-cooling

Following Alexiades and Solomon [13], it is worthwhile
to show the condition required for constitutional under-
cooling. The equilibrium temperature at a given point in
time and space is, by

T equðx; tÞ ¼ �Stð1� Clðx; tÞÞ ð18Þ
An under-cooled liquid is defined as a liquid in which its
actual temperature is below this equilibrium temperature,
i.e., T < Tequ. In this inequality the temperature T can be
expressed by the first part of (14) and the equilibrium tem-
perature by the right-hand side of (18), written in terms of
the interface temperature T i by using the second part of
(14) and (15). In this way the condition for under-cooling
can be restated as

T 0 þ ðT i � T 0Þ
erfc x

2
ffi
t
p

� �
erfcðkÞ < T i

erfc x
ffiffiffiffi
Le
p

2
ffi
t
p

� �
erfc k

ffiffiffiffiffi
Le
p� � ð19Þ

Clearly, this condition is more likely to occur when the
Lewis number is large Le—corresponding to a pronounced
solute boundary layer ahead of the solid–liquid interface—
and when the initial temperature is small. Further the likeli-
hood of the condition occurring increase with distance x.
2.5. Limit solutions

Although traditionally the Rubinstein solution is pre-
sented under the condition that the initial temperature is
above the initial liquidus, i.e., T0 > 0 there is no reason
why the initial liquid cannot be under-cooled so that
T0 < 0. In this case, as noted by Voller [20], two interesting
limit solutions can be drawn from (12)–(17). In the first
place if the partition coefficient is set to k = 1 the concen-
tration remains fixed at C = 1 and (12)–(17) will reduce
to the classic thermal problem of the one-dimensional
solidification of an under-cooled pure melt reported in Car-
slaw and Jaeger [21]. Secondly, when the surface tempera-
ture is set to the interface temperature, Tsur = T i, the
solution (12)–(17) reduces to the solution for an under-
cooled melt in an insulated domain; a solution that is useful
for verifying simulations of equiaxed crystal growth in
under-cooled melts [19].

3. An enthalpy model for the binary-alloy solidification

The enthalpy model for the binary-alloy problem is
developed from the model presented by Crowley and
Okendon [14]. The major extensions are a treatment that
will allow for an under-cooled melt and problems that
involve different specific heats in the solid and liquid
phases. The key to the approach is to introduce three
new variables the enthalpy defined as

H ¼
T þ 1 if f ¼ 1

T equ þ f if 0 < f < 1

T equ þ cðT � T equÞ if f ¼ 0

8><
>: ð20Þ

where 0 6 f 6 1 is the liquid fraction, the mixture solute de-
fined by

Cf ¼ fCl þ ð1� f ÞCs ð21Þ

and the solute-potential defined by

V ¼ Cf

f ð1� kÞ þ k
ð22Þ

With the additional mixture definitions af = f + (1 � f)ca
and Df ¼ 1

Le ½f þ kð1� f ÞD�, single domain governing
equations for heat and mass transport can be constructed,
viz

oH
ot
¼ rðafrT Þ; x > 0 ð23Þ

oCf

ot
¼ rðDfrV Þ; x > 0 ð24Þ

These are essentially the governing equations presented by
Crowley and Ockendon [14] but with an extended defini-
tion of the enthalpy H and af in terms of the liquid fraction
to allow for (i) the treatment of under-cooling and (ii) a
jump in the specific heat. Note when f = 0 the solid phase
transport Eqs. (2) and (4) are recovered from (23) and
(24) and when f = 1 the liquid phase equations (3) and
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(5) are recovered. Further, as noted by Crowley and
Ockendon [14] (24) is the solute equivalent of the enthalpy
equation (23); Cf, taking the role of enthalpy, jumps across
the solid–liquid interface and, V, taking the role of temper-
ature, is piecewise continuous across the interface.
4. The numerical solution

The key contribution of this work is to construct a new
solution for (20)–(24) and verify its performance with the
similarity solution. The novel features in this enthalpy solu-
tion are an ability to deal with a jump in the specific heat
and under-cooling in the liquid. Note to retain generality
in the solution developed it will not be assumed that the
interface temperature and concentration are constants as
specified in the Rubinstein similarity solution. Rather the
developed enthalpy solution will allow the interface con-
centrations and temperatures to vary. In this way (i) a gen-
erality of application is maintained and (ii) obtaining a
match between the new numerical enthalpy solution and
similarity solution is seen as a stringent test.

An explicit time stepping solution of (20)–(24) is used.
As illustrated in Fig. 3, the domain is covered by a one-
dimensional array of 150 equally sized control volumes
of length Dx = 0.5, a node point is located in the center
of each volume, the left face of the first volume coincides
with x = 0, a time step of Dt = 0.025 is used. The choice
of space step is sufficient to satisfy grid independence
and the choice of time steps is sufficient to avoid stability
problems. At the start of the calculation all node values
are set to fi = 1, Cf

i ¼ 1; T i ¼ T 0; V i ¼1 and Hi = Ti + 1.
In order to initiate solidification in volume i = 1 the
resetting fi = 0.999 is made before time step calculations
commence. Calculations are carried out until the solid–
liquid interface has reached node i = 20 (s = 9.75).
Following standard practice with enthalpy methods, see
Price and Slack [4] and Voller and Cross [5] the calcu-
lated nodal fields of interest are recorded and output
f new
i ¼ �

�½k � ð1� kÞðHnew
i þ StÞ� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k � ð1� kÞðH new

i þ StÞ�2 � 4ð1� kÞð�kSt � kH new
i þ StCf new

i Þ
q

2ð1� kÞ ð30Þ
whenever the solid–liquid interface passes over a node
point, i.e., when the condition f new

i < 0:5 and fi > 0.5 is
met.
x = 0 

ni i+11

Δx
qoutqin

Fig. 3. Schematic of numerical grid arrangement.
Within a time step the solution operates as follows:

1. Nodal fields of enthalpy and mixture concentration are
calculated from

Hnew
i ¼ Hi þ

Dt
Dx2
½qH

i in � qH
i out�;

Cf new
i ¼ Cf

i þ
Dt
Dx2
½qC

i in � qC
i out� ð25Þ

where assuming that the ‘‘out” face, on the right of vol-
ume i, retains liquid properties up until the volume is
fully solid (fi = 0) (the so-called ‘‘state of face approach”

[22]), the fluxes in (25) are calculated as
qH
i out ¼

T i � T iþ1; fi > 0

caðT i � T iþ1Þ; otherwise

�
;

qH
i in ¼ qH

i�1 out; qH
1 in ¼ 2caðT sur � T 1Þ; qH

n out ¼ 0

ð26Þ

qC
i out ¼

1
Le ðV i � V iþ1Þ; fi > 0
Dk
Le ðV i � V iþ1Þ; otherwise

(
;

qC
i in ¼ qC

i�1 out; qC
1 in ¼ 0; qC

n out ¼ 0 ð27Þ
2. Following the calculation of the enthalpy and mixture
concentration fields the nodal liquid fraction field is
updated. This update is only activated at phase change
nodes, identified by the nodal liquid fraction falling
strictly in the range 0 < fi < 1. At a phase change node
the middle component of (20) gives

Hnew
i ¼ T i equ þ f new

i ð28Þ
where interpreting V new

i as the liquid phase
concentration

T i equ ¼ �Stð1� V new
i Þ ð29Þ

combining (28) and (29) and using the definition of V in
(22) results in a quadratic equation in the node liquid
fraction, the required positive root is given by
This calculation is caped by f = min(1,max(0,f)) to
ensure that calculated liquid fractions remain in the
range 0 6 f 6 1. In more general problems the non-lin-
ear coupling between the liquid fraction, enthalpy
and equilibrium temperature may require at iterative
treatment as oppose to the quadratic solution presented
here.

3. With the updated liquid fraction in hand, updated sol-
ute-potential and equilibrium temperature nodal fields
can be calculated from (22) and (29), respectively.

4. The temperature field can be updated by inverting (20),
i.e,
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T new
i ¼

H new
i � 1; if f ¼ 1

T equ i if 0 < f < 1

Hnew
i þðc�1ÞT equ

c if f ¼ 0

8>>><
>>>:

ð31Þ
5. Finally, to allow the phase change to move from one
volume to the next, at the end of the time step calcula-
tions a sweep is made through the nodal domain and
the setting f new

i ¼ 0:999 made at all nodes i, where
fi ¼ 1 with at least one neighboring node f new

nb ¼ 0.

On first glance the solution procedure may appear sim-
ilar to that used by Crowley and Okendon [14]. The subtle
and critical difference in the current method, however, is
the identification of the phase change nodes through the
liquid fraction value falling in the strict range 0 < f < 1.
Crowley and Okendon [14] identify the phase change nodes
by the dimensionless enthalpy falling in the strict range
Tequ < H < Tequ + 1. Although the later approach handles
the movement of the solid–liquid interface between nodes
automatically it is unable to deal with problems where
the specific heat is discontinuous between phases and can-
not solve problems where the liquid is under-cooled—a
case where a number of nodal enthalpies will fall in the
phase change range. In contrast, the former, proposed
method based on liquid fraction identification can readily
deal with a specific heat change and under-cooling. The
small downside in this approach is the need to force the
movement of the interface between nodes; but in prac-
tice—see step 5 in the above algorithm—such a forcing is
easy to apply.

Within this discussion of alternative methods it needs
to be pointed out that the enthalpy based approach of
Wilson et al. [15] is also able to handle a jump in specific
heat between the solid and liquid phases and an under-
cooled liquid. This approach, however is aimed at a mac-
roscopic treatment of the binary-alloy solidification and in
the presence of an under-cooled liquid a mushy region is
established where, in a one-dimensional domain, a frac-
tional value of the liquid fraction 0 < f < 1 is spread over
several node points. In contrast, the enthalpy method
developed here operates at the scale of the interface and
assumes that a sharp interface (only one node in the range
0 < f < 1) is maintained, even in the presence of under-
cooling. Recall in the introduction the argument is made
that if the scale (the thickness of the domain normal to
the growth direction) is smaller than the critical wave
length for morphological instability [17] a plane sharp
interface can be maintained in the presence of an under-
cooled liquid.
5. Results

Predictions with the proposed enthalpy method are
made for the binary-alloy problem defined by the settings
T sur ¼ �1; k ¼ 0:1; a ¼ 1:5; c ¼ 2;

D ¼ Le; St ¼ �0:1 ð31aÞ

T 0; Le ¼

0:1; 0:5 no undercooling

0:1; 4:0 constitutional undercooling

�0:4; 0:5 imposed undercooling

8>><
>>: ð31bÞ
Note in comparing with the Rubinstein solution, since the
solute concentration in the solid phase will take a fixed con-
stant value, the choice of solid mass diffusivity has no influ-
ence. As such, the setting of D = Le is made to ensure that
stability of the discrete solute transport equation is met as
the Lewis number Le is increased.

Figs. 4–6 compare predictions from the proposed
enthalpy solution with the Rubinstein solution. Each figure
shows results for (a) the interface, (b) the actual and equi-
librium temperature profiles when the interface has
advanced to s = 9.75, (c) the concentration history for
the 10th node point, x = 4.75, and (d) the temperature his-
tory at x = 4.75. Fig. 4 corresponds to the case where there
is no under-cooling in the liquid, Fig. 5 to the case where
constitutional under-cooling occurs, and Fig. 6 to the case
where an initial under-cooling is imposed; in all plots the
numerical results are shown as symbols and the analytical
as continuous lines. The following comments are made:
In all cases the agreement between the numerical and ana-
lytical results is excellent. The region of constitutional
under-cooling is clearly predicted—panel (b) in Fig. 5. In
the imposed under-cooling case, Fig. 6, the warmest tem-
perature is always at the interface, i.e., the solidification
is driven by heat flowing into both the liquid and the solid.

In providing a more in-depth discussion about the
results in Figs. 4–6 two comments are made about the pre-
dictions of the flat equilibrium temperature profile in the
solid phase. Firstly, it is noted that the equilibrium temper-
ature is directly connected to the concentration via the last
component in (1). This value should not be confused with a
real temperature and the appearance of a flat equilibrium
temperature profile in the solid does not imply or require
an infinite heat removal through the solid. Secondly, the
flat (constant) prediction of the equilibrium temperature
in the solid indicates that, for the choice of boundary con-
dition at x = 0 (6), the predicted concentration at which the
phase change occurs remains fixed throughout the solidifi-
cation. It is stressed that this condition occurs naturally in
both the analytical and numerical solutions, i.e., it is not
imposed or assumed a priori. Because of the natural
appearance of a flat concentration (equilibrium tempera-
ture) in the solid, as noted above, the exact choice of the
solid diffusivity D in the numerical solution should not
influence the concentration predictions. In practice, how-
ever, it is found that for small, but physically reasonable,
values D � 0.01 there is a short range (3–5 nodes) in the
numerical solution over which the predicted concentration
value ramps to the fixed analytical value; once this region is
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cleared the fidelity between the numerical and analytical
solution is retained in all predicted fields.
If a different temperature boundary condition is
employed at x = 0, e.g., the convective condition
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ca
oT
ox
¼ hðT sur � T ambÞ ð32Þ

where h a dimensionless convective transport coefficient
and Tamb is the dimensionless ambient temperature, then
a similarity solution cannot be found and a constant con-
centration field in the solid would not be expected. To
see this, (32) is incorporated into the numerical solution
and a prediction made with the settings

h ¼ 1; T amb ¼ �1; T 0 ¼ 0:1; k ¼ 0:1; a ¼ 1:5;

c ¼ 2; Le ¼ 4; D ¼ 0:01; St ¼ �0:1

The top panel of Fig. 7 shows predicted temperature and
equilibrium temperature profiles when the solidification
front is located at s = 9.75. Due to the relatively small
value of D used in this case, concentrations at a point in
the solid remain close to the value that existed when that
point first formed. Hence, the equilibrium temperature pro-
file in the solid provides a record of the interface tempera-
ture. The results clearly show a decrease in this value as the
solidification front advances; a prediction in contrast to the
previous results in Figs. 4–6 where this value remains fixed.

Up to this point the value of the Lewis number used as
been relatively small. To redress this, the lower panel of
Fig. 7 provides temperature predictions for a case identical
to the top panel but with Le = 100; a number approaching
those found in metal alloys. The Lewis number is the ratio
of thermal to solute diffusivities. An increase in the Lewis
number leads to a relative decrease in the width of the sol-
ute boundary layer ahead of the solidification front. This in
turn leads to a steeper rise in the equilibrium temperature
and the larger under-cooled region shown in the lower
panel of Fig. 7.
6. Conclusions

There is current interest in modeling crystal growth pro-
cesses in alloys [19,23–28]. These models require the track-
ing of a sharp solid–liquid interface—driven by coupled
heat and mass transport—in the presence of an under-
cooled liquid. A well known related test problem in the
existing literature [12–16] is a one-dimensional solidifica-
tion controlled by coupled heat and mass transport—the
binary-alloy problem. Prior numerical solutions of the bin-
ary-alloy problem, however, steer clear of cases of a sharp
interface in the presence of liquid under-cooling. The previ-
ous solutions either ignore cases where under-cooling will
occur [14,15] or allow for the formation of a mushy region
(a non-sharp front) when and under-cooled condition is
reached [16]. In this paper, the binary-alloy problem as
introduced by Rubinstein [12] is revisited and specific focus
is placed on solutions of the problem in the presence of
liquid under-cooling. In the first place an argument has
been presented to show that—under appropriate restric-
tions on the width of the one-dimensional domain—physi-
cally realistic problems that involve a plane solid–liquid
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interface in the presence of liquid under-cooling may be
realized. This is followed by the development of a novel
numerical solution—based on the enthalpy based binary-
alloy model proposed by Crowley and Okendon [14]—that
is able to both (i) track a sharp solid–liquid interface for
the binary-alloy problem in the presence of an under-
cooled liquid, and (ii) handle changes in specific heat
between the solid and liquid phases.. The author is una-
ware of previous fixed grid or enthalpy based solutions that
are able to simultaneously handle these features. The per-
formance of the proposed enthalpy method is compared
with the available analytical solution. Across a range of
conditions, spanning from no-under-cooling to an initially
imposed under-cooling, the level of performance in predict-
ing front movement, concentrations and temperature is,
without exception, excellent. This underscores the potential
strength of enthalpy models and solutions in solving cur-
rent crystal growth problems of interest.
In terms of extensions of the method developed here.
There are no intrinsic features in the proposed enthalpy
solution scheme that will inhibit its immediate application
in the solution of multi-dimensional problems. A caveat in
such a case, however, is to be aware of the fact that if a
sharp interface is assumed under-cooling associated with
the curvature and speed of the interface may need to be
included. The inclusion of these features can be based on
recently reported enthalpy methods of equiaxed dendritic
growth in under-cooled melts [19,25–28].

References

[1] J. Crank, Free and Moving Boundary Problems, Claendon Press,
Oxford, 1984.

[2] V.R. Voller, Numerical methods for phase-change problems, in: W.J.
Minkowycz, E.M. Sparrow, J.Y. Murthy (Eds.), Handbook of
Numerical Heat Transfer, John Wiley, New York, 2006, pp. 593–622.

[3] N.R. Eyres, D.R. Hartree, J. Ingham, R. Jackson, R.J. Sarjant, S.M.
Wagstaff, The calculation of variable heat flow in solids, Phil. Trans.
R. Soc. A 240 (1946) 1–57.

[4] P.H. Price, M.R. Slack, The effect of latent heat on numerical
solutions of the heat flow equation, Br. J. Appl. Phys 5 (1954) 285–
287.

[5] V. Voller, M. Cross, Accurate solutions of moving boundary
problems using the enthalpy method, Int. J. Heat Mass Transfer 24
(1981) 545–556.

[6] A.W. Date, Novel strongly implicit formulation for multidimensional
Stefan problems, Numer. Heat Transfer B 27 (1992) 231–251.

[7] M. Lacroix, V.R. Voller, Finite difference solutions of solidification
phase change problems: transformed vs. fixed grids, Numer. Heat
Transfer 17 (1990) 25–42.

[8] R. Giffith, B. Nassersharif, Comparison of one-dimensional interface-
following and enthalpy methods for the numerical solution of phase
change, Numer. Heat Transfer (B) 18 (1990) 169–187.

[9] J. Caldwell, C.-C. Chen, Numerical solutions of the Stefan problem
by the enthalpy methods and the heat balance integral method,
Numer. Heat Transfer B 33 (1998) 99–117.

[10] V.R. Voller, A. Mouchmov, M. Cross, An explicit method for
coupling temperature and concentration fields in solidification mod-
els, Appl. Math. Model. 28 (2004) 79–94.

[11] S. Ganguly, S. Chakraborty, A generalized enthalpy-based macro
model for ternary alloy solidification simulations, Numer. Heat
Transfer B 51 (2007) 293–313.

[12] L. Rubinstein, The Stefan Problem, Translations of Math. Mono-
graphs, vol. 27, American Mathematical Society, Providence, 1971.

[13] V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and
Freezing Processes, Hemisphere, Washington, 1984, pp. 106–109.

[14] A.B. Crowley, J.R. Ockendon, On the numerical solution of an alloy
solidification problem, Int. J. Heat Mass Transfer 22 (1979) 941–947.

[15] V.R. Voller, An implicit enthalpy solution for phase change
problems: with application to a binary alloy solidification, Appl.
Math. Model. 11 (1987) 110–116.

[16] D.G. Wilson, A.D. Solomon, V. Alexiades, A model of binary alloy
solidification, Int. J. Numer. Meth. Eng. 20 (1984) 1084–1967.

[17] W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans Tech
Publishing, Switzerland, 1986, pp. 53–54.

[18] W.W. Mullins, R.F. Sekerka, Stability of a planar interface during
solidification of a dilute binary alloy, J. Appl. Phys. 35 (1964) 444–
451.

[19] V.R. Voller, An enthalpy method for modeling dendritic growth in a
binary alloy, Int. J. Heat and Mass Transfer, in press, doi:10.1016/
j.ijheatmasstransfer.2007.04.025.

[20] V.R. Voller, A similarity solution for solidification of an under-cooled
binary alloy, Int. J. Heat Mass Transfer 49 (2006) 1981–1985.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.04.025
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.04.025


706 V.R. Voller / International Journal of Heat and Mass Transfer 51 (2008) 696–706
[21] H. Carslaw, J. Jaeger, Conduction of Heat in Solids, second ed.,
Clarendon Press, Oxford, 1959.

[22] V.R. Voller, Numerical treatment of rapidly changing and discontin-
uous conductivities, Int. J. Heat Mass Transfer 44 (2001) 4553–4556.

[23] J.C. Ramirez, C. Beckermann, A. Karma, H.-J. Diepers, Phase-field
modeling of binary alloy solidification with coupled heat and solute
diffusion, Phys. Rev. E 69 (2004).
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